Integrating powers of sin x
How do you find
In = ∫ sinn x dx
This is easy and satisfying to do using Integration by parts:
∫ u dv = uv - ∫ v du
Take u=sin n-1x and dv = sin x dx
This means v = -cos x, and du=(n-1) cos x sin n-2x dx
Then In = ∫ u dv = -cos x sinn-1x + (n-1)∫ cos2x sinn-2x dx
Substituting cos2x = 1 - sin2x inside the integral sign, notice that we get an iterative relationship involving In-2
Then In = -cos x sinn-1x + (n-1)(In-2 - In)
nIn = -cos x sinn-1x + (n-1)In-2
-mathformula not MarkupType-
Fatal error: Uncaught Error: Call to undefined method mathformula::makeTypeDef() in /var/www/vhosts/ent.storkey.uk/html/inc/reporting2.php:365
Stack trace:
#0 /var/www/vhosts/ent.storkey.uk/html/inc/dynaPage.php(189): echo_value('intsinpower', 'content', Array)
#1 /var/www/vhosts/ent.storkey.uk/html/inc/dynaPage.php(742): dynaPage->echo_value('content')
#2 /var/www/vhosts/ent.storkey.uk/html/inc/dynaPage.php(179): mainPanel->write('main-panel')
#3 /var/www/vhosts/ent.storkey.uk/html/index.php(21): dynaPage->write()
#4 {main}
thrown in /var/www/vhosts/ent.storkey.uk/html/inc/reporting2.php on line 365
